태그 보관물: plot

속도 프로파일과 탄성파 트레이스 추출하여 그리기

속도모델에서 프로파일을 추출하여 깊이에 따라 속도 그림을 그려보겠습니다. 이진 형식의 속도파일에서 텍스트 파일로 프로파일을 추출한 후 그리는 방법과 이진 속도파일을 직접 읽어서 그리는 방법을 살펴보겠습니다. 참고로, 탄성파 공통송신원모음 등에서 트레이스를 추출하여 그리는 과정 또한 동일합니다.

텍스트 파일로 추출하여 그리기

바이너리 파일에서 프로파일 또는 트레이스를 추출하기 위해 gpl 라이브러리의 gplTracePick 프로그램을 사용하겠습니다. 이차원 단면(속도모델, 공통송신원모음 등)에서 세로 방향 트레이스를 추출할 때 사용하는 프로그램입니다. (가로방향 트레이스는 gplHTracePick 프로그램을 이용하면 됩니다.) 이 프로그램을 그냥 실행하면 아래와 같은 도움말이 나옵니다.


%%sh # 이 글을 쓰고 있는 jupyter notebook에서 shell 명령을 실행하기 위한 magic command입니다.
gplTracePick # 실제 터미널상에서 실행하는 명령어

 Gpl trace picker
 Required parameters:
     [i] n1=            : # of grids in fast dimension
     [s] fin=           : input binary file
     [s] fout=          : output binary file
     [i] pick=          : (=first), first pick (1~n2)
 Optional parameters:
     [i] last=first     : last pick (pick~n2)
     [i] step=1         : pick step
     [f] d1=1.0         : grid size
     [i] n2=calc        : # of grids in slow dimension
     [s] type=f         : data type [ifdcz]
     [s] otype=a        : output type [ab] (ascii/binary)

위에서 n1finfoutpick은 프로그램 실행시 필수적으로 넣어줘야 하는 값입니다.

  • n1은 세로 방향(fast dimension) 격자수
  • fin은 입력 파일 이름
  • fout은 출력 파일 이름
  • pick은 추출하고자하는 가로 방향(slow dimension) 격자 번호입니다. 격자 번호는 1번부터 시작합니다.

Marmousi 속도모델(nx=576, ny=188, h=0.016 km)에 대해 1.6 km 지점(격자번호 101)에서 시작하여 3.2 km 간격(200개 격자 간격)으로 3개의 속도 프로파일을 추출한다면 아래와 같이 실행할 수 있습니다.


%%sh
gplTracePick n1=188 d1=0.016 fin=marm16km.bin fout=vel_profile.txt pick=101 step=200 last=501

 n2=         576


     n1=188
     d1=0.016
     fin=marm16km.bin
     fout=vel_profile.txt
     pick=101
     step=200
     last=501

그 때 결과물은 아래와 같습니다. 첫 번째 열은 깊이 정보, 두 번째부터 네 번째 열까지는 추출한 속도 프로파일 정보입니다(1.6 km, 4.8 km, 8.0 km).

%%sh
head vel_profile.txt
   0.00000000       1.50000012       1.50000012       1.50000012    
   1.60000008E-02   1.50000012       1.50000012       1.50000012    
   3.20000015E-02   1.50000012       1.65800011       1.59800005    
   4.80000004E-02   1.66200006       1.66200006       1.60200012    
   6.40000030E-02   1.66600013       1.66600013       1.60600019    
   8.00000057E-02   1.67000008       1.73999715       1.69000006    
   9.60000008E-02   1.67400002       1.74399781       1.69400012    
  0.112000003       1.67800009       1.61800003       1.69800007    
  0.128000006       1.78200006       1.70200002       1.63200009    
  0.144000009       1.78600013       1.70600009       1.63600004    

텍스트 파일로 추출한 결과는 gnuplot과 같은 프로그램을 이용해 빠르게 확인해볼 수 있습니다. 여기서는 파이썬의 Matplotlib을 이용하여 위의 속도 프로파일을 그려보겠습니다.


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

trc=np.loadtxt("vel_profile.txt")

h=0.016
fs='large'

plt.figure(figsize=[15,5])
for i,ix in enumerate([100,300,500]):
    plt.plot(trc[:,0],trc[:,i+1],label="{0} km".format(ix*h))

plt.legend(loc="upper left",fontsize=fs)
plt.xlabel("Depth (km)",fontsize=fs)
plt.ylabel("Velocity (km/s)",fontsize=fs)

<matplotlib.text.Text at 0x10cc66c88>

png

이진 파일을 직접 읽어서 그리기

이번에는 파이썬에서 이진 형식의 속도모델 파일을 직접 읽어서 그려보겠습니다.


nx=576
ny=188
vel=np.fromfile("marm16km.bin",dtype=np.float32)
vel.shape=(nx,ny)

h=0.016
fs='large'
depth=np.arange(ny)*h

plt.figure(figsize=[15,5])
for ix in [100,300,500]:
    plt.plot(depth,vel[ix,:],label="{0} km".format(ix*h))

plt.legend(loc="upper left",fontsize=fs)
plt.xlabel("Depth (km)",fontsize=fs)
plt.ylabel("Velocity (km/s)",fontsize=fs)

<matplotlib.text.Text at 0x10d13dd30>

png

참고로, 파이썬은 배열 인덱스가 0번부터 시작하기 때문에 가로방향 100, 300, 500번 속도 프로파일을 가져다가 그렸습니다(gplTracePick을 이용하는 앞의 예제에서는 101, 301, 501번 격자 위치에서 추출했죠).

탄성파 트레이스 그리기

공통송신원모음에서 탄성파 트레이스를 추출하여 그리는 과정은 속도모델에서 프로파일을 추출하여 그리는 경우와 동일합니다. 아래는 샘플 개수가 723개, 샘플링 간격 4 ms, 트레이스가 96개인 공통송신원모음 파일(marm3000.bin)에서 31번째와 61번째 트레이스를 그리는 예제입니다.


ntr=96
ns=723
dt=0.004
trc=np.fromfile("marm3000.bin",dtype=np.float32)
trc.shape=(ntr,ns)

fs='large'
time=np.arange(ns)*dt

plt.figure(figsize=[15,5])
for itr in [30,60]:
    plt.plot(time,trc[itr,:],label="trace {0}".format(itr+1))
plt.legend(loc="upper left",fontsize=fs)
plt.xlabel("Time (s)",fontsize=fs)
plt.ylabel("Amplitude",fontsize=fs)
plt.xlim([0,ns*dt])

(0, 2.892)

png

속도모델 그림 그리기

두 가지 방법으로 2차원 속도모델을 그려보겠습니다. 첫 번째 방법은 SU의 psimage를 이용하는 방법, 두 번째는 python의 matplotlib을 이용하는 방법입니다.

psimage로 그리기

첫 번째 방법부터 보겠습니다. psimage는 쉘에서 사용하는 명령어이지만, gpl 라이브러리의 psplot 모듈을 이용하면 python 명령을 통해 간편하게 속도모델을 그릴 수 있습니다. Marmousi 속도모델을 그림으로 그려보겠습니다.


from gpl.psplot import plot

nx=576
ny=188
h=0.016
fin="marm16km.drt"

opt = "n1={0} d1={1} d2={1} d1num=1 lbeg=1.5 lend=5.5".format(ny,h,h)
plot.velocity("marm16km.png", fin, opt)

psimage label1="Depth (km)" legend=1 d2s=0.5 lheight=1.0 lstyle="vertright" label2="Distance (km)" height=1.0 labelsize=8 lwidth=0.1 d1s=0.5 width=2.65  n1=188 d1=0.016 d2=0.016 d1num=1 lbeg=1.5 lend=5.5 < marm16km.drt > marm16km.eps

// adding velocity unit (km/s)

// fixing bounding box

// converting .eps to .png ..

vel(marm16km.png)

velocity_color를 이용해 컬러로 그릴 수도 있습니다.


plot.velocity_color("marm16km_color.png",fin,opt)

psimage label1="Depth (km)" ghls="0.33,0.5,1" bps=24 bhls="0.67,0.5,1" d1s=0.5 lwidth=0.1 whls="0,0.5,1" legend=1 d2s=0.5 lheight=1.0 lstyle="vertright" label2="Distance (km)" height=1.0 labelsize=8 width=2.65  n1=188 d1=0.016 d2=0.016 d1num=1 lbeg=1.5 lend=5.5 < marm16km.drt > marm16km_color.eps

// adding velocity unit (km/s)

// fixing bounding box

// converting .eps to .png ..

vel(marm16km_color.png)

Matplotlib으로 그리기

두 번째 방법은 python의 matplotlib 라이브러리를 이용하는 방법입니다. 이를 위해서는 코드에서 numpy를 이용해 속도모델을 읽어들인 후에 matplotlib으로 그립니다. 속도모델을 그리는 부분은 함수로 작성하였는데, 필요에 따라 수정해서 사용하면 되겠습니다.


%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np

def plot_vel(vel, h, figsize=[15,4], unit='km/s', xticks=None, yticks=None, cticks=None, cmap='gray_r', fontsize=20):
    xmax=(vel.shape[0]-1)*h
    ymax=(vel.shape[1]-1)*h

    plt.figure(figsize=figsize)
    plt.imshow(vel.transpose(),extent=(0,xmax,ymax,0),cmap=cmap)

    # x,y labels
    plt.xlabel('Distance (km)',fontsize=fontsize)
    plt.ylabel('Depth (km)',fontsize=fontsize)

    # x,y ticks, tick labels
    plt.tick_params(labelsize=fontsize)
    plt.gca().xaxis.tick_top()
    plt.gca().xaxis.set_label_position("top")
    xticks and plt.xticks(xticks)
    yticks and plt.yticks(yticks)

    # colorbar
    cb=plt.colorbar(shrink=1.0,pad=0.01,aspect=10,ticks=cticks)
    plt.clim([vel.min(),vel.max()])
    cb.set_label(unit,fontsize=fontsize)
    ct=plt.getp(cb.ax,'ymajorticklabels')
    plt.setp(ct,fontsize=fontsize)

# 속도모델 읽기
vel=np.fromfile(fin,dtype=np.float32)
vel.shape=(nx,ny)

yticks=[0,1,2] # y축 ticks
cticks=[2,3,4,5] # colorbar ticks
plot_vel(vel,h,yticks=yticks,cticks=cticks)

png

# 컬러로 그리고(cmap='jet') 파일로 저장하기
plot_vel(vel,h,xticks=[0,3,6,9],cmap='jet')
plt.savefig("vel.png",bbox_inches='tight')

png

결과물로 저장한 vel.png 파일은 다음과 같습니다.

vel(vel.png)

Matplotlib을 이용한 탄성파 자료처리 그림 그리기

이전 글에서는 SU 명령어들을 이용해 탄성파 자료처리 결과 확인용 그림을 그리는 방법을 살펴보았습니다. 이번에는 Python의 Matplotlib을 이용하여 그린 그림 예제들을 보겠습니다. 그림은 IPython Processing 모듈을 이용해 그렸으며, 그릴 때 사용한 코드는 github에서 볼 수 있습니다.

속도모델, 구조보정 영상

우선, 다음과 같이 이진파일로부터 2차원 속도모델과 구조보정 결과를 그릴 수 있습니다. 기본적으로 속도모델은 컬러, 구조보정 영상은 흑백으로 그리도록 했지만, 필요에 따라 코드를 수정해서 색상을 바꿀 수 있습니다. 색상을 바꾸고 싶을 경우 imshow 함수의 cmap 인자를 이용하면 됩니다.

%matplotlib inline
from pkprocess import *
import numpy as np

vel = np.fromfile("marm16km.drt", dtype=np.float32)

nx = 576
nz = 188
h = 0.016
vel.shape = (nx, nz)

plot_vel(vel, h)

png


plot_mig(vel,h)

png

공통송신원 모음, 스펙트럼

그리고 SU 파일로부터 공통송신원 모음이나 F-X, F-K 스펙트럼을 그릴 수 있습니다. 공통송신원 모음은 Wiggle trace 또는 이미지로 그릴 수 있고, 이미지 색상은 cmap으로 조절 가능합니다.


su = read_su("marm3000.su")

plot_wiggle(su, perc=97)

min=-616.05078125 max=613.4453125

png


plot_image(su, perc=97)

min=-616.05078125 max=613.4453125

png


plot_image(su, perc=97, cmap='bwr')

min=-616.05078125 max=613.4453125

png


specfx(su)

dt=0.004, fmax=125.0

png


specfk(su)

dt=0.004, fmax=125.0

dx=0.025, kmax=20.0

png

위의 그림들 모두 Matplotlib으로 그렸으므로, 수정이 필요할 경우 Matplotlib 문서를 참고하여 수정해서 사용하시면 되겠습니다.

탄성파 자료처리 그림 그리기

탄성파 자료처리 결과 그림을 쉽게 그리는 방법을 살펴보겠습니다.

탄성파 자료처리를 하다 보면 결과물을 그림으로 확인해야 하는 경우가 많습니다. 특별히 노력해서 그려야 하는 그림도 있지만 속도모델, 공통송신원모음 등 대부분의 그림은 거의 비슷한 명령으로 그릴 수 있습니다. 개인적으로 논문이나 발표자료에 넣을 그림을 그릴 때 Seismic Un*x(SU)를 많이 이용하는데, 몇 가지 자주 그리는 그림들을 쉽게 그릴 수 있도록 파이썬 모듈을 만들었습니다. 모듈은 gpl라이브러리에 포함되어 있습니다. 최근 python 3 용으로 수정하였습니다.

먼저 속도모델을 예로 들어보겠습니다. 그림을 그리기 위한 코드는 다음과 같습니다.


from gpl.psplot import plot

vel="marm16km.drt"
opt="n1=188 d1=0.016 d2=0.016 d1num=1 d2num=2"

plot.velocity_color("vel_color.png",vel,opt)

위 코드는 gpl.psplot 모듈에서 plot을 가져오고, marm16km.drt 파일로부터 opt 문자열의 옵션을 이용하여 vel_color.png 파일을 생성하는데, 컬러로 된 속도모델 그림으로 만들라는 코드입니다.

velocity_color는 그림 종류를 지정하는 명령인데, 현재 다음과 같은 명령들을 지원합니다.

  • velocity(target, source, option, unit=”km/s”)
  • velocity_color(target, source, option, unit=”km/s”)
  • gradient(target, source, option)
  • gradient_color(target, source, option)
  • migration(target, source, option)
  • contour(target, source, option)
  • seismogram(target, source, option)
  • spectrum(target, source, option)

위의 명령들은 SU를 이용해 해당 그림을 그리라는 명령으로, contourpscontour를 사용하고 나머지는 psimage를 사용합니다. 입력 파일이 SU 파일이라면 supscontour 또는 supsimage를 사용합니다.

인자들 중 target은 출력 파일, source는 입력 파일, option은 그림 그릴 때 사용할 옵션입니다. 그림 종류에 따라 기본적으로 몇 가지 옵션이 들어가있는데, n1, d1, d2와 같이 입력 파일에 따라 달라지는 옵션을 option에 넣어주면 됩니다. 그리고 기본 옵션을 덮어쓰고 싶은 경우에도 option에 추가해줍니다.

속도모델의 단위는 기본적으로 km/s로 지정해 놓았는데, 필요에 따라 바꿔서 사용할 수 있습니다. g/cc로 바꾸면 밀도 모델을 그릴 수도 있겠죠. migration은 snapshot을 그릴 때 사용할 수도 있습니다.

SU 명령은 기본적으로 eps 파일을 생성합니다. target을 eps 외의 다른 파일(png, tiff, jpg 등)로 지정하면ImageMagickconvert 명령을 이용해 eps 파일을 변환합니다.

따라서 본 모듈의 모든 기능을 이용하려면 Python, SU, ImageMagick이 필요합니다.

터미널에서 위의 코드를 실행했을 때 나오는 메시지는 다음과 같습니다.

psimage height=1.0 width=2.65 d2s=0.5 lwidth=0.1 lstyle="vertright" lheight=1.0
label2="Distance (km)" ghls="0.33,0.5,1" bps=24 whls="0,0.5,1" legend=1
bhls="0.67,0.5,1" labelsize=8 label1="Depth (km)" d1s=0.5  n1=188 d1=0.016
d2=0.016 d1num=1 d2num=2 < marm16km.drt > vel_color.eps

psimage: bclip=5.5 wclip=1.5

// adding velocity unit (km/s)

// fixing bounding box
Original:  %%BoundingBox: 66 41 353 207
Updated:   %%BoundingBox: 85 104 324 202

// converting .eps to .png ..

내용을 살펴보면 다음 순서로 실행됩니다.

  1. SU의 psimage 명령을 이용해 속도모델 eps 파일을 생성합니다. 옵션은 컬러 속도모델에 맞춰서 들어갑니다. 참고로, 그림 크기는 Geophysics 논문 기준에 맞춘 것입니다.
  2. km/s라는 단위를 넣어줍니다(postscript 수정).
  3. 그림 여백을 조절합니다(bounding box 수정).
  4. eps 파일을 png 파일로 수정합니다.

그리고, 결과물인 vel_color.png은 다음과 같습니다. output(vel_color.png)

아래 코드와 다른 그림 예시를 올리니 필요한 그림에 해당하는 명령을 사용하시면 되겠습니다.


from gpl.psplot import plot

vel="marm16km.drt"
opt="n1=188 d1=0.016 d2=0.016 d1num=1 d2num=2"

plot.velocity("vel.png",vel,opt+"lbeg=1.5 lend=5.5 lfnum=1.5")
plot.velocity_color("vel_color.png",vel,opt)
plot.velocity_color("density_color.png",vel,opt,unit="g/cc")
plot.gradient("grad.png",vel,opt)
plot.gradient_color("grad_color.png",vel,opt)
plot.migration("mig.png",vel,opt)
plot.contour("contour.png",vel,opt)

seismo="marm3000.su"
opt2="f2=0 d2=0.025 d1s=0.5 d2s=0.5"
plot.seismogram("seismo.png",seismo,opt2)

spec="marm3000fx.su"
plot.spectrum("spec.png",spec,opt2)

output(vel.png)

output(vel_color.png)

output(density_color.png)

output(grad.png)

output(grad_color.png)

output(mig.png)

output(contour.png)

output(seismo.png)

output(spec.png)

Postscript language editing

Postscript로 만들어진 .ps 또는 .eps 파일은 앞의 글에서 보셨던 것처럼, 일반적인 text 편집기로 편집할 수 있는 ascii 파일입니다. 파일의 내용은 출력물을 만들어내는 postscript 언어죠. 따라서 postscript 언어를 알면 eps 그림 파일도 마음대로 편집할 수 있습니다. Postscript language를 배우고 싶으신 분은 Adobe site에 가셔서 매뉴얼을 받아보시면 됩니다. 여기서는 앞의 글에서 만들었던 파일에서 legend unit의 위치를 바꾸는 법만 살펴보도록 하겠습니다. 앞에서 보았던 그림은 다음과 같습니다.

before editing

before editing

위 그림에서 오른쪽 끝에 있는 “m/s”를 legend(scale bar) 위로 옮겨봅시다. 결과는 다음과 같습니다.(옮긴 후 bounding box도 바꿔줬습니다.)

after editing unit

after editing unit

위의 결과를 얻기 위해서는 .eps 파일을 열어서 ‘m/s’라는 문자열을 찾아 지워줍니다. 파일 끝에서 약간 앞에 두 개가 있을겁니다. 그런 후 아래의  코드를 .eps 파일 끝부분의 ‘showpage’ 명령 앞에 넣어줍니다.

%%%%% changed the position of unit
GS
270 190 TR
NP
/Helvetica findfont 8 scalefont setfont
0 0 0 setrgbcolor
21.96 -6.462 M
(m/s) SW exch -0.5 mul
exch -0.5 mul RM (m/s) SH
S
GR
%%%%%

%%%%%는 comment이고, ‘m/s’라는 문자열의 위치는 ‘GS’ 아래에 있는 두 개의 숫자(x좌표, y좌표)로 조정합니다. 그림 크기에 따라 위치는 달라집니다.

Postscript bounding box

SU(Seismic Un*x)에 있는 psimage로 Marmousi 속도모델을 그리면 다음과 같습니다.(그림 겉부분의 회색은 그림에 포함되어 있지 않은 부분으로, 경계를 표시하기 위해 넣었습니다.)

original eps file

original eps file

여기서 사용한 명령은 다음과 같습니다.

psimage par='../marm8m.txt' label1="Depth (km)" label2="Offset (km)" labelsize=8 height=1.0 width=2.4 legend=1 lstyle=vertright lwidth=0.1 lheight=1 units="m/s" < ../marm8m.drt > marm.eps

이 때, psimage는 그림 주위로 지나치게 넓은 공간을 만들어 줍니다. Bounding box 정보가 정확하지 않기 때문이죠. 이 상태로는 eps 파일을 다른 그림파일로 변환하여 paper에 넣거나 power point 발표자료에 넣기에 좋지 않습니다(물론 자르기 crop 기능을 이용할 수도 있기는 하죠).

이 공간을 없애기 위해서는 아래 명령을 이용합니다.

gs -sDEVICE=bbox -dNOPAUSE -dBATCH marm.eps

그럼 다음과 같은 결과를 보여줍니다.

GPL Ghostscript 8.63 (2008-08-01)
Copyright (C) 2008 Artifex Software, Inc.  All rights reserved.
This software comes with NO WARRANTY: see the file PUBLIC for details.
Loading NimbusSanL-Regu font from /usr/share/fonts/default/Type1/n019003l.pfb… 2656772 1085343 2641408 1357198 2 done.
Loading NimbusSanL-Bold font from /usr/share/fonts/default/Type1/n019004l.pfb… 2673436 1178370 2661504 1363393 2 done.
%%BoundingBox: 87 107 327 200
%%HiResBoundingBox: 87.695997 107.509005 326.645990 199.601994

위의 결과에서 마지막 두 줄에 나온 것이 흰 공간을 없앤 bounding box의 크기입니다. 둘 중 하나를 쓰시면 됩니다. 네 개의 숫자는 각각 왼쪽 아래 x좌표, 왼쪽 아래 y좌표, 오른쪽 위 x좌표, 오른쪽 위 y좌표를 의미합니다. Eps 파일을 텍스트 편집기로 열어서 %%BoundingBox 라고 써진 줄을 찾아 bounding box 크기를 위의 정보로 고쳐주면 아래와 같은 결과를 얻을 수 있습니다.

after fixing bounding box

after fixing bounding box

또는 SU에 있는 psbbox 라는 프로그램을 이용할 수도 있습니다.

psbbox llx=87 lly=107 urx=327 ury=200 < marm.eps >marmfx.eps

Gpl에 있는 fixbbox 프로그램은 위의 과정을 자동으로 실행하는 Python 프로그램으로,

fixbbox <input eps file> <output eps file>

과 같이 실행할 수 있습니다.

GNU Quick Plot (gnuqp)

Gnuplot은 리눅스에서 텍스트파일에 저장된 값을 빠르게 그림으로 그려주는 프로그램입니다. 다양한 기능을 가지고 있지만, 제 경우에는 주로 수치해석 후 결과 확인용으로 씁니다.
gnuplot으로 그림을 그릴 때에는 command line 상에서 gnuplot이라고 치고 들어가서 gnuplot 명령어들을 이용하여 그림을 그리고 q를 입력하여 빠져나옵니다.
그런데 간단히 결과를 확인해보기 위해서 gnuplot에 들어가서

p 'file1' w l,'file1' u 1:3 w l,'file1' u 1:4 w p

또는

set grid
set xrange[:10]
set log y
p 'file1' w l,'file2' w l,'file3' w l

과 같이 매번 치려니 귀찮다는 생각이 들었습니다. 그래서 gnuqp (GNU Quick Plot)를 만들었습니다. 이 script를 사용하면 command line 상에서 바로 gnuplot 명령어를 사용하여 그림을 그릴 수 있습니다. 사용 방법은 아래와 같습니다.

Usage :
gnuqp [options] filename1 [u 1:2] [w l], filename2 [u 1:2] [w l], filename3 ...

실행파일 이름, 몇 가지 setting 관련 옵션들, 이후에는 gnuplot의 plot 명령어를 입력합니다.

Required parameters :
filename1
Empty filename[2,3,...] will be replaced by the filename1

두 번째 위치부터는 파일명을 생략하면 첫 번째 파일명으로 대체합니다. 하나의 파일에서 여러 column들을 그릴 때 편리합니다.

Optional parameters :
u 1:2   : columns you want to plot
w [lp..]: line style- line, point, dot or impulse ..etc (default: w l)

plot 명령어의 옵션들 중에는 using (columns)과 with (line style)만 지원합니다. 그 외의 명령은 제가 잘 안 써서요^^.
위의 옵션을 주지 않았을 때 기본적으로 with line 옵션으로 그립니다.

-p      : do not run gnuplot. just print the gnuplot command
-c      : no comma seperation - the arguments are filenames seperated with a blank- use with glob pattern
-l       : set logscale y
-g      : set grid
-x[:10] : set xrange [:10]
-y[1:5] : set yrange [1:5]

위의 옵션들은 gnuplot의 setting을 간편하게 하기 위해 만들었습니다.

-p 옵션을 붙이면 gnuplot의 명령어만 출력하고 그림은 안 그립니다.

-c 옵션을 붙이면 파일들을 기본 옵션(with line)으로 그립니다. 이 때 파일명들 사이의 “,”를 생략하고 파일명만 씁니다. command line상에서 glob pattern을 이용하여 여러 그림을 그릴 수 있도록 하기 위한 옵션입니다. 예를 들면, 다음과 같은 경우죠.

./gnuqp.py -p -c file.00*
-> p 'file.0010' w l,'file.0020' w l,'file.0030' w l,'file.0040' w l,'file.0050' w l

나머지 gnuplot setting들은 위의 설명으로 충분할 것이라 생각합니다.
앞에 예를 들었던 명령어들을 gnuqp를 이용하여 실행한다면 다음과 같습니다.

(gnuplot)
p 'file1' w l,'file1' u 1:3 w l,'file1' u 1:4 w p
(q)

gnuqp file1, u 1:3, u 1:4 wp,

(gnuplot)
set grid
set xrange[:10]
set log y
p 'file1' w l,'file2' w l,'file3' w l
(q)

gnuqp file1, file2, file3 -g -l -x[:10]와 같이 실행할 수 있습니다. gnuqp는 gpl에 포함되어 있습니다.